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Abstract. We define metric spaces, which are sets together with the addi-

tional structure provided by a distance function. We give examples and de-
velop their basic properties. We go far enough in this direction to thoroughly

motivate the next level of abstraction, the topological space.

1. Motivation

At the dawn of man, pastoral shepherds made sure that their sheep never strayed
too far, and they counted them at the end of the day. Thus the two primary
branches of mathematics originated.

• Counting led to arithmetic, which evolved into algebra, which is the study
of binary operators.
• Measuring distance led to geometry, which generalizes to topology, which

is the study of open sets.

The use of open intervals in Calculus ensures that the notion of limit can be
applied accurately. Recall that an open interval is an interval that does not contain
its endpoints. To say that a point a is in an open interval, and that a function f is
defined on that interval, indicates that f is also defined for all values near a.

We recall the definition of a continuous function from Calculus.
Let f : D → R, where D ⊂ R. Let a ∈ D such that there exists an open interval

I ⊂ D with a ∈ I. We say that f is continuous at a if

∀ ε > 0 ∃δ > 0 3 x ∈ I and |x− a| < δ ⇒ |f(x)− f(a)| < ε.

In words, f is continuous at a if whenever x is near a, f(x) is near f(a). By “near”,
we mean “within a small enough open interval”. We wish to generalize the concept
of continuous, and to do so, we generalize the concept of “near”.
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2. Metric Spaces

Definition 1. Let X be a set. A metric on X is a function

d : X ×X → R
satisfying

(M1) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y (Positivity);
(M2) d(x, y) = d(y, x) (Symmetry);
(M3) d(x, y) + dy, z) ≥ d(x, z) (Triangle Inequality).

The pair (X, d) is called a metric space.

Example 1. The set of real numbers is a metric space. The distance from x to y
is defined by d(x, y) = |x− y|.

Example 2. Let X = R2 and use the Pythagorean theorem to define the metric d
by

d(p, q) =
√

(x2 − x1)2 + (y2 − y1)2,

where p = (x1, y1) and q = (x2, y2).

Example 3. Let X = R3. Two applications of the Pythagorean theorem and some
slight simplification leads to the definition of the metric d by

d(p, q) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

where p = (x1, y1, z1) and q = (x2, y2, z2).

Example 4. Let X = Rn. We need to slightly modify our notation to conveniently
write the distance formula. Thus for p = (x1, x2, . . . , xn) and q = (y1, y2, . . . , yn),
define

d(p, q) =

√√√√ n∑
i=1

(yi − xi)2.

Example 5. Let R∞ denote the set of all sequences of real numbers that are
eventually zero, that is, sequences (xn) such that xn = 0 for all but finitely many
n. Let X = R∞ and for x, y ∈ X, define

d(x, y) =

√√√√ ∞∑
i=1

(xi − yi)2,

where x = (xn) and y = (yn). This make sense, since there are only finitely many
nonzero summands. Then (X, d) is a metric space.
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Example 6. Let `2 denote the set of all sequences of real numbers (xn) that satisfy
the convergence criterion

∞∑
i=1

x2i <∞.

Let X = `2 and for x, y ∈ X, define

d(x, y) =

√√√√ ∞∑
i=1

(xi − yi)2,

where x = (xn) and y = (yn). That this series converges follows from the inequality

(a± b)2 ≤ 2(a2 + b2),

which the reader is welcome to verify. Then (X, d) is a metric space.

Example 7. Let X be any set and define d : X ×X → R by

d(x, y) =

{
0 if x = y;

1 otherwise .

Then d is a metric on X, called the discrete metric, and (X, d) is called a discrete
metric space.

Example 8. Let F[a,b] denote the set of all bounded functions f : [a, b] → R. Let
X = F[a,b] and for f, g ∈ X define

d(f, g) = max{|f(x)− g(x)| | x ∈ [a, b]}.
Then (X, d) is a metric space.

Example 9. Let C[a,b] denote the set of all continuous functions f : [a, b] → R.
Let X = C[a,b] and for f, g ∈ X define

d(f, g) =

∫ b

a

|f − g| dx.

Then (X, d) is a metric space.
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3. Subspaces of Metric Spaces

When creating a new category of mathematical objects, it is typical to discuss
what sort of subobjects are to be consider. These is relatively easy in the case of a
metric space.

Definition 2. Let (X, d) be a metric space and let A ⊂ X. Let dA : A × A → R
be the restriction of d to A× A ⊂ X ×X. Then dA is a metric on A, and (A, dA)
is called a subspace of (X, d).

Example 10. Define

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}.

We call S1 the unit circle. It inherits the metric dS1 from (R2, d).
Define

D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.
We call D2 the (closed) unit disk, and (D2, dD2) is a metric space.

Example 11. Let S1 be the unit circle, and let d be as in Example 10. We may
define a metric

α : S1 × S1 → R by α(p1, p2) = 2 arcsin(d(p1, p2)).

where p1, p2 ∈ S1. Then α(p1, p2) is the angle, measured in radians, from p1 to the
origin and then to p2; this is the arclength of the shortest path between these two
points.

This produces a different metric on S1. In due course, we will investigate the
relationship between these metrics and related consequences for the structure of
the metric space.

4. Classification of Points

Definition 3. Let (X, d) be a metric space. Let A ⊂ X and let p ∈ X.
We say that p is an interior point of A if there exists ε > 0 such that

∀x ∈ x : d(p, x) < ε⇒ x ∈ A.

We say that p is an exterior point of A if there exists ε > 0 such that

∀x ∈ x : d(p, x) < ε⇒ x /∈ A.

We say that p is a boundary point of A if for every ε > 0 there exists a ∈ A and
x ∈ X rA such that d(p, a) < ε and d(p, x) < ε.

It is clear that interior points are in A, exterior points are in the complement of
A, and boundary points may or may not be in A.

Example 12. Let X = R and A = [0, 2). Then 1 is an interior point of A, 3 is an
exterior point of A, and 0 and 2 are both boundary points of A.

Example 13. Let X = R2 and A = {(x, y) ∈ R2 | 0 ≤ x < 2 and 0 ≤ y < 2}.
Then (1, 1) is an interior point of A, (0, 3) and (3, 0) are exterior points of A, (0, 0)
is a boundary point of A with is an element of A, and (1, 2) is a boundary point of
A which is not an element of A.
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What is written above is the type of definition used by mathematical analysts.
We wish to discuss this in terms of open sets, so that we can use the language and
thought processes of mathematical topologists. This first step is to rephrase our
definitions in terms of open balls.

Definition 4. Let (X, d) be a metric space. Let p ∈ X and let r > 0.
The open ball about p or radius r is

Br(p) = {x ∈ X | d(p, x) < r}.
The closed ball about p or radius r is

Br(p) = {x ∈ X | d(p, x) ≤ r}.
A neighborhood of p is a set which contains an open ball about p.
A deleted neighborhood of p is a set of the form Ar{p}, where A is a neighborhood

of p.

It is clear that a neighborhood of p contains p, but a deleted neighborhood of p
does not.

Setwise complements are useful in the study of metric spaces, so we dedicate a
special notation for them. Thus, if A is a subset of a metric space X, let Ac denote
the complement of A with respect to the entire space X; that is, Ac = X rA.

Let A and B be any sets. We say that A intersects B if A ∩ B is nonempty.
Clearly, A intersects B if and only if B intersects A. Using this, the definitions
above are equivalent to the following.

Definition 5. Let (X, d) be a metric space. Let A ⊂ X and let p ∈ X.
We say that p is a closure point of A if every neighborhood of p intersects A.
We say that p is an interior point of A if there exists neighborhood of p which

is contained in A.
We say that p is a boundary point of A if every neighborhood of p intersects A

and Ac.
We say that p is an accumulation point of A if every deleted neighborhood of p

intersects A.
We say that p is an isolated point of A if p ∈ A and there exists a deleted

neighborhood of p which is contained in Ac.
The closure of A is the set of closure points of A, and is denoted CloA.
The interior of A is the set of interior points of A, and is denoted IntA.
The boundary of A is the set of boundary points of A, and is denoted BndA.
The derived set of A is the set of accumulation points of A, and is denoted A′.
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5. Open and Closed Sets

Definition 6. Let (X, d) be a metric space. Let A ⊂ X.
We say that A is open if for every a ∈ A there exists ε > 0 such that

∀x ∈ X : d(a, x) < ε⇒ x ∈ A.

The next may seem obvious, but it is required to go forward.

Proposition 1. Open balls are open sets.

Proof. Let (X, d) be a metric space, a ∈ X, and r > 0. Now Br(a) is an arbitrary
open ball in X. Let b ∈ Br(a) and let s = d(a, b). Let t = r − s and let c ∈ Bt(b).
Then d(a, c) ≤ d(a, b) + d(b, c) < s+ t = r. Thus c ∈ B, so Bt(b) ⊂ Br(a), so Br(a)
is open. �

Clearly, a set is open if every point in it has a neighborhood which is contained
in it. Equivalently, a set is open if it is a union of open balls.

Proposition 2. Let X be a metric space. Then

(a) The empty set ∅ and the whole space X are open sets.
(b) The union of an arbitrary number of open sets is an open set.
(c) The intersection of finitely many open sets is an open set.

Proof. A set is open if every point in it has an open ball around it which is entire in
the empty set. This is vacuously true for the empty set, since it contains no points
(so every point in it has this property). The whole space is open, since every ball
in X is in X.

A set is open if it is the union of a collection of open balls. The union of a
collection of open sets is the union of a collection of unions of open balls. So, it is
itself a union of open balls.

The third property requires a little more care. Thus let n be a (finite) positive
integer, and U1, U2, . . . , Un be open sets. Let A = ∩ni=1Ui be their intersection.
If A is empty, it is open by part (a). Otherwise, it contains a point, say a ∈ A.
Then a ∈ Ui for each i ∈ {1, . . . , n}. Since Ui is open, there exists εi such that
a ∈ Bεi(a) ⊂ Ui, for each i. Let ε = min{ε1, . . . , εn}. Then Bε(a) ⊂ Ui for each i,
so Bε(a) ⊂ A. Thus A is open. �

Note that the intersection of arbitrarily many open sets is not necessarily open.
For example, in R, we have

∞⋂
n=1

(
− 1

n
,

1

n

)
= {0}.
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6. Continuous Functions

Recall that a real-valued function f defined on an interval containing a is con-
tinuous at a if

∀ ε > 0∃δ > 0 3 x ∈ I and |x− a| < δ ⇒ |f(x)− f(a)| < ε.

We extend the definition of continuous functions as follows.
We may rephrase the continuity condition using balls as

∀ ε > 0∃δ > 0 3 x ∈ Bδ(a) ⇒ f(x) ∈ Bε(f(a)).

This clearly has the identical meaning in the case of R, but is immediately applicable
to define continuity at a point in any metric space.

It will be convenient, in some cases, to cut loose of the metric altogether. Thus,
we redefine a neighborhood of a point a to be any set containing an open set which
contains a. All we have previously said remains as it was with this redefinition.

Indeed, we can reword the definition above using the language of neighborhoods,
by stating that f is continuous at a if for every neighborhood V of f(a) there exists
a neighborhood U of a such that f(U) ⊂ V . This is clearly equivalent.

The traditional approach starts with this definition.

Definition 7. Let (X, dX) and (Y, dY ) be metric spaces. Let f : X → Y and let
a ∈ X. We say that f is continuous at a if

∀ ε > 0∃δ > 0 3 dX(x, a) < δ ⇒ dY (f(x), f(a)) < ε.

We say that f is continuous if f is continuous at a for every a ∈ X.

With a bit of introspection, one sees that f : X → Y is continuous at a if
for every neighborhood V of f(a) there exists a neighborhood U of a such that
f(U) ⊂ V . We would like to discuss the proof of the following.

Proposition 3. Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y .
Then f is continuous if and only if the preimage of every open set in Y is open in
X.

Proof. (⇒) Suppose that f is continuous, and let V ⊂ Y be open. Let A = f−1(V ),
and let a ∈ A. Let b = f(a). Since V is open, there exists ε > 0 such that
dY (y, b) < ε implies that y ∈ V . Since f is continuous at a, there exists δ > 0 such
that dX(x, a) < δ implies that dY (f(x), b) < ε; by the previous sentence, this in
turn implies that f(x) ∈ V , so that x ∈ f−1(V ) = A. Thus if dX(x, a) < δ, we
know that x ∈ A, so A is open in X.

(⇐) Suppose that the preimage of every open set in Y is open in X. Let a ∈ X;
we wish to show that f is continuous at a. Let ε > 0. Let b = f(a) and set
V = Bε(a). Let U = f−1(V ). Since V is open in Y , U is open in X. So there exists
δ > 0 such that x ∈ U whenever dX(a, x) < δ. Then f(x) ∈ f(U) = V = Bε(a);
thus dX(x, a) < δ implies that dY (f(x), f(a)) < ε. This shows that f is continuous
at a. �
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